Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Vaccine ; 42(14): 3355-3364, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38631949

RESUMO

To better understand the role of pHsp90 adjuvant in immune response modulation, we proposed the use of the Receptor Binding Domain (RBD) of the Spike protein of SARS-CoV2, the principal candidate in the design of subunit vaccines. We evaluated the humoral and cellular immune responses against RBD through the strategy "protein mixture" (Adjuvant + Antigen). The rRBD adjuvanted with rAtHsp81.2 group showed a higher increase of the anti-rRBD IgG1, while the rRBD adjuvanted with rNbHsp90.3 group showed a significant increase in anti-rRBD IgG2b/2a. These results were consistent with the cellular immune response analysis. Spleen cell cultures from rRBD + rNbHsp90.3-immunized mice showed significantly increased IFN-γ production. In contrast, spleen cell cultures from rRBD + rAtHsp81.2-immunized mice showed significantly increased IL-4 levels. Finally, vaccines adjuvanted with rNbHsp90.3 induced higher neutralizing antibody responses compared to those adjuvanted with rAtHsp81.2. To know whether both chaperones must form complexes to generate an effective immune response, we performed co-immunoprecipitation (co-IP) assays. The results indicated that the greater neutralizing capacity observed in the rRBD adjuvanted with rNbHsp90.3 group would be given by the rRBD-rNbHsp90.3 interaction rather than by the quality of the immune response triggered by the adjuvants. These results, together with our previous results, provide a comparative benchmark of these two novel and safe vaccine adjuvants for their capacity to stimulate immunity to a subunit vaccine, demonstrating the capacity of adjuvanted SARS-CoV2 subunit vaccines. Furthermore, these results revealed differences in the ability to modulate the immune response between these two pHsp90s, highlighting the importance of adjuvant selection for future rational vaccine and adjuvant design.


Assuntos
Adjuvantes Imunológicos , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Proteínas de Choque Térmico HSP90 , Imunoglobulina G , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Camundongos , Adjuvantes Imunológicos/administração & dosagem , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Proteínas de Choque Térmico HSP90/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Feminino , COVID-19/prevenção & controle , COVID-19/imunologia , Camundongos Endogâmicos BALB C , Imunidade Celular , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Adjuvantes de Vacinas , Imunidade Humoral , Humanos
2.
Mol Biochem Parasitol ; 258: 111615, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38354788

RESUMO

Toxoplasma has high host flexibility, infecting all nucleated cells of mammals and birds. This implies that during its infective process the parasite must constantly adapt to different environmental situations, which in turn leads to modifications in its metabolism, regulation of gene transcription, translation of mRNAs and stage specific factors. There are conserved pathways that support these adaptations, which we aim to elucidate in this review. We begin by exploring the widespread epigenetic mechanisms and transcription regulators, continue with the supportive role of Heat Shock Proteins (Hsp), the translation regulation, stress granules, and finish with the emergence of contingency genes in highly variable genomic domains, such as subtelomeres. Within epigenetics, the discovery of a new histone variant of the H2B family (H2B.Z), contributing to T. gondii virulence and differentiation, but also gene expression regulation and its association with the metabolic state of the parasite, is highlighted. Associated with the regulation of gene expression are transcription factors (TFs). An overview of the main findings on TF and development is presented. We also emphasize the role of Hsp90 and Tgj1 in T. gondii metabolic fitness and the regulation of protein translation. Translation regulation is also highlighted as a mechanism for adaptation to conditions encountered by the parasite as well as stress granules containing mRNA and proteins generated in the extracellular tachyzoite. Another important aspect in evolution and adaptability are the subtelomeres because of their high variability and gene duplication rate. Toxoplasma possess multigene families of membrane proteins and contingency genes that are associated with different metabolic stresses. Among them parasite differentiation and environmental stresses stand out, including those that lead tachyzoite to bradyzoite conversion. Finally, we are interested in positioning protozoa as valuable evolution models, focusing on research related to the Extended Evolutionary Synthesis, based on models recently generated, such as extracellular adaptation and ex vivo cyst recrudescence.


Assuntos
Adaptação Fisiológica , Epigênese Genética , Toxoplasma , Toxoplasma/genética , Toxoplasma/metabolismo , Toxoplasma/crescimento & desenvolvimento , Animais , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Regulação da Expressão Gênica , Humanos , Evolução Biológica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Evolução Molecular
3.
Int J Parasitol Drugs Drug Resist ; 23: 120-129, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38043188

RESUMO

Toxoplasma gondii is an obligate intracellular parasite in the phylum Apicomplexa that causes toxoplasmosis in humans and animals worldwide. Despite its prevalence, there is currently no effective vaccine or treatment for chronic infection. Although there are therapies against the acute stage, prolonged use is toxic and poorly tolerated. This study aims to explore the potential of repurposing topotecan and 10-hydroxycamptothecin (HCPT) as drugs producing double strand breaks (DSBs) in T. gondii. DSBs are mainly repaired by Homologous Recombination Repair (HRR) and Non-Homologous End Joining (NHEJ). Two T. gondii strains, RHΔHXGPRT and RHΔKU80, were used to compare the drug's effects on parasites. RHΔHXGPRT parasites may use both HRR and NHEJ pathways but RHΔKU80 lacks the KU80 protein needed for NHEJ, leaving only the HRR pathway. Here we demonstrate that topotecan and HCPT, both topoisomerase I venoms, affected parasite replication in a concentration-dependent manner. Moreover, variations in fluorescence intensity measurements for the H2A.X phosphorylation mark (γH2A.X), an indicator of DNA damage, were observed in intracellular parasites under drug treatment conditions. Interestingly, intracellular replicative parasites without drug treatment show a strong positive staining for γH2A.X, suggesting inherent DNA damage. Extracellular (non-replicating) parasites did not exhibit γH2A.X staining, indicating that the basal level of DNA damage is likely to be associated with replicative stress. A high rate of DNA replication stress possibly prompted the evolution of an efficient repair machinery in the parasite, making it an attractive target. Our findings show that topoisomerase 1 venoms are effective antiparasitics blocking T. gondii replication.


Assuntos
Parasitos , Toxoplasma , Humanos , Animais , Toxoplasma/genética , Topotecan/farmacologia , Topotecan/metabolismo , Reparo do DNA , Dano ao DNA
4.
Biochim Biophys Acta Gene Regul Mech ; 1866(3): 194943, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37217032

RESUMO

Through regulation of DNA packaging, histone proteins are fundamental to a wide array of biological processes. A variety of post-translational modifications (PTMs), including acetylation, constitute a proposed histone code that is interpreted by "reader" proteins to modulate chromatin structure. Canonical histones can be replaced with variant versions that add an additional layer of regulatory complexity. The protozoan parasite Toxoplasma gondii is unique among eukaryotes in possessing a novel variant of H2B designated H2B.Z. The combination of PTMs and the use of histone variants are important for gene regulation in T. gondii, offering new targets for drug development. In this work, T. gondii parasites were generated in which the 5 N-terminal acetylatable lysines in H2B.Z were mutated to either alanine (c-Myc-A) or arginine (c-Myc-R). The c-Myc-A mutant displayed no phenotype over than a mild defect in its ability to kill mice. The c-Myc-R mutant presented an impaired ability to grow and an increase in differentiation to latent bradyzoites. The c-Myc-R mutant was also more sensitive to DNA damage, displayed no virulence in mice, and provided protective immunity against future infection. While nucleosome composition was unaltered, key genes were abnormally expressed during in vitro bradyzoite differentiation. Our results show that regulation of the N-terminal positive charge patch of H2B.Z is important for these processes. We also show that acetylated N-terminal H2B.Z interacts with some unique proteins compared to its unacetylated counterpart; the acetylated peptide pulled down proteins associated with chromosome maintenance/segregation and cell cycle, suggesting a link between H2B.Z acetylation status and mitosis.


Assuntos
Histonas , Toxoplasma , Animais , Camundongos , Histonas/metabolismo , Toxoplasma/genética , Acetilação , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional
5.
Proteomes ; 11(1)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36976888

RESUMO

Toxoplasma gondii is an obligate intracellular apicomplexan that causes toxoplasmosis in humans and animals. Central to its dissemination and pathogenicity is the ability to rapidly divide in the tachyzoite stage and infect any type of nucleated cell. Adaptation to different cell contexts requires high plasticity in which heat shock proteins (Hsps) could play a fundamental role. Tgj1 is a type I Hsp40 of T. gondii, an ortholog of the DNAJA1 group, which is essential during the tachyzoite lytic cycle. Tgj1 consists of a J-domain, ZFD, and DNAJ_C domains with a CRQQ C-terminal motif, which is usually prone to lipidation. Tgj1 presented a mostly cytosolic subcellular localization overlapping partially with endoplasmic reticulum. Protein-protein Interaction (PPI) analysis showed that Tgj1 could be implicated in various biological pathways, mainly translation, protein folding, energy metabolism, membrane transport and protein translocation, invasion/pathogenesis, cell signaling, chromatin and transcription regulation, and cell redox homeostasis among others. The combination of Tgj1 and Hsp90 PPIs retrieved only 70 interactors linked to the Tgj1-Hsp90 axis, suggesting that Tgj1 would present specific functions in addition to those of the Hsp70/Hsp90 cycle, standing out invasion/pathogenesis, cell shape motility, and energy pathway. Within the Hsp70/Hsp90 cycle, translation-associated pathways, cell redox homeostasis, and protein folding were highly enriched in the Tgj1-Hsp90 axis. In conclusion, Tgj1 would interact with a wide range of proteins from different biological pathways, which could suggest a relevant role in them.

6.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36824796

RESUMO

Through regulation of DNA packaging, histone proteins are fundamental to a wide array of biological processes. A variety of post-translational modifications (PTMs), including acetylation, constitute a proposed histone code that is interpreted by "reader" proteins to modulate chromatin structure. Canonical histones can be replaced with variant versions that add an additional layer of regulatory complexity. The protozoan parasite Toxoplasma gondii is unique among eukaryotes in possessing a novel variant of H2B designated H2B.Z. The combination of PTMs and the use of histone variants is important for gene regulation in T. gondii, offering new targets for drug development. In this work, T. gondii parasites were generated in which the 5 N-terminal acetylatable lysines in H2B.Z were mutated to either alanine (c-Myc-A) or arginine (c-Myc-R). c-Myc-A mutant only displayed a mild effect in its ability to kill mice. c-Myc-R mutant presented an impaired ability to grow and an increase in differentiation to latent bradyzoites. This mutant line was also more sensitive to DNA damage, displayed no virulence in mice, and provided protective immunity against future infection. While nucleosome composition was unaltered, key genes were abnormally expressed during in vitro bradyzoite differentiation. Our results show that the N-terminal positive charge patch of H2B.Z is important for these procceses. Pull down assays with acetylated N-terminal H2B.Z peptide and unacetylated one retrieved common and differential interactors. Acetylated peptide pulled down proteins associated with chromosome maintenance/segregation and cell cycle, opening the question of a possible link between H2B.Z acetylation status and mitosis.

8.
Pathogens ; 13(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38251340

RESUMO

Toxoplasma gondii, a protozoan parasite with the ability to infect various warm-blooded vertebrates, including humans, is the causative agent of toxoplasmosis. This infection poses significant risks, leading to severe complications in immunocompromised individuals and potentially affecting the fetus through congenital transmission. A comprehensive understanding of the intricate molecular interactions between T. gondii and its host is pivotal for the development of effective therapeutic strategies. This review emphasizes the crucial role of proteomics in T. gondii research, with a specific focus on host-parasite interactions, post-translational modifications (PTMs), PTM crosstalk, and ongoing efforts in drug discovery. Additionally, we provide an overview of recent advancements in proteomics techniques, encompassing interactome sample preparation methods such as BioID (BirA*-mediated proximity-dependent biotin identification), APEX (ascorbate peroxidase-mediated proximity labeling), and Y2H (yeast two hybrid), as well as various proteomics approaches, including single-cell analysis, DIA (data-independent acquisition), targeted, top-down, and plasma proteomics. Furthermore, we discuss bioinformatics and the integration of proteomics with other omics technologies, highlighting its potential in unraveling the intricate mechanisms of T. gondii pathogenesis and identifying novel therapeutic targets.

9.
Epigenomes ; 6(3)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36135316

RESUMO

Subtelomeres (ST) are chromosome regions that separate telomeres from euchromatin and play relevant roles in various biological processes of the cell. While their functions are conserved, ST structure and genetic compositions are unique to each species. This study aims to identify and characterize the subtelomeric regions of the 13 Toxoplasma gondii chromosomes of the Me49 strain. Here, STs were defined at chromosome ends based on poor gene density. The length of STs ranges from 8.1 to 232.4 kbp, with a gene density of 0.049 genes/kbp, lower than the Me49 genome (0.15 kbp). Chromatin organization showed that H3K9me3, H2A.X, and H3.3 are highly enriched near telomeres and the 5' end of silenced genes, decaying in intensity towards euchromatin. H3K4me3 and H2A.Z/H2B.Z are shown to be enriched in the 5' end of the ST genes. Satellite DNA was detected in almost all STs, mainly the sat350 family and a novel satellite named sat240. Beyond the STs, only short dispersed fragments of sat240 and sat350 were found. Within STs, there were 12 functional annotated genes, 59 with unknown functions (Hypothetical proteins), 15 from multigene FamB, and 13 from multigene family FamC. Some genes presented low interstrain synteny associated with the presence of satellite DNA. Orthologues of FamB and FamC were also detected in Neospora caninum and Hammondia hammondi. A re-analysis of previous transcriptomic data indicated that ST gene expression is strongly linked to the adaptation to different situations such as extracellular passage (evolve and resequencing study) and changes in metabolism (lack of acetyl-CoA cofactor). In conclusion, the ST region of the T. gondii chromosomes was defined, the STs genes were determined, and it was possible to associate them with high interstrain plasticity and a role in the adaptability of T. gondii to environmental changes.

10.
BMC Genomics ; 23(1): 128, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164683

RESUMO

BACKGROUND: Toxoplasma gondii is a protozoan parasite that differentiates from acute tachyzoite stages to latent bradyzoite forms in response to environmental cues that modify the epigenome. We studied the distribution of the histone variants CenH3, H3.3, H2A.X, H2A.Z and H2B.Z, by genome-wide chromatin immunoprecipitation to understand the role of variant histones in developmental transitions of T. gondii parasites. RESULTS: H3.3 and H2A.X were detected in telomere and telomere associated sequences, whereas H3.3, H2A.X and CenH3 were enriched in centromeres. Histones H2A.Z and H2B.Z colocalize with the transcriptional activation mark H3K4me3 in promoter regions surrounding the nucleosome-free region upstream of the transcription start site. The H2B.Z/H2A.Z histone pair also localizes to the gene bodies of genes that are silent but poised for activation, including bradyzoite stage-specific genes. The majority of H2A.X and H2A.Z/H2B.Z loci do not overlap, consistent with variant histones demarcating specific functional regions of chromatin. The extent of enrichment of H2A.Z/H2B.Z (and H3.3 and H2A.X) within the entire gene (5'UTR and gene body) reflects the timing of gene expression during the cell cycle, suggesting that dynamic turnover of H2B.Z/H2A.Z occurs during the tachyzoite cell cycle. Thus, the distribution of the variant histone H2A.Z/H2B.Z dimer defines active and developmentally silenced regions of the T. gondii epigenome including genes that are poised for expression. CONCLUSIONS: Histone variants mark functional regions of parasite genomes with the dynamic placement of the H2A.Z/H2B.Z dimer implicated as an evolutionarily conserved regulator of parasite and eukaryotic differentiation.


Assuntos
Histonas , Toxoplasma , Cromatina/genética , Expressão Gênica , Histonas/genética , Nucleossomos/genética , Toxoplasma/genética
11.
Diagn Microbiol Infect Dis ; 102(3): 115608, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34942587

RESUMO

The performance of Toxoplasma rGra8, rMic1, and the chimeric rGra4-Gra7 antigens for early congenital toxoplasmosis (CT) diagnosis was evaluated. Sera from CT patients showed high IgG reactivity to rMic1, rGra8, and rGra4-Gra7. The seroreactivity of samples from uninfected infants was lost within 2 months of age.


Assuntos
Toxoplasma , Toxoplasmose Congênita , Toxoplasmose , Anticorpos Antiprotozoários , Antígenos de Protozoários/genética , Diagnóstico Precoce , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G , Lactente , Sensibilidade e Especificidade , Toxoplasma/genética , Toxoplasmose/diagnóstico , Toxoplasmose Congênita/diagnóstico
12.
Front Plant Sci ; 12: 726910, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675949

RESUMO

Plant 90kDa heat shock protein (HSP90) is a potent adjuvant that increases both humoral and cellular immune responses to diverse proteins and peptides. In this study, we explored whether Arabidopsis thaliana HSP90 (AtHsp81.2) can improve the immune effects of a Toxoplasma gondii surface antigen 1 (SAG1). We designed two constructs containing the sequence of mature antigen (SAG1m), from aa77 to aa322, and B- and T-cell antigenic epitope-containing SAG1HC, from aa221 to aa319 fused to AtHsp81.2 sequence. When comparing the transient expression in Nicotiana tabacum X-27-8 leaves, which overexpress the suppressor helper component protease HC-Pro-tobacco etch virus (TEV), to that in N. benthamiana leaves, co-agroinfiltrated with the suppressor p19, optimal conditions included 6-week-old N. benthamiana plants, 7-day time to harvest, Agrobacterium tumefaciens cultures with an OD600nm of 0.6 for binary vectors and LED lights. While AtHsp81.2-SAG1m fusion protein was undetectable by Western blot in any of the evaluated conditions, AtHsp81.2-SAG1HC was expressed as intact fusion protein, yielding up to 90µg/g of fresh weight. Besides, the AtHsp81.2-SAG1HC mRNA was strongly expressed compared to the endogenous Nicotiana tabacum elongation factor-alpha (NtEFα) gene, whereas the AtHsp81.2-SAG1m mRNA was almost undetectable. Finally, mice were orally immunized with AtHsp81.2-SAG1HC-infiltrated fresh leaves (plAtHsp81.2-SAG1HC group), recombinant AtHsp81.2-SAG1HC purified from infiltrated leaves (rAtHsp81.2-SAG1HC group), non-infiltrated fresh leaves (control group), or phosphate-buffered saline (PBS group). Serum samples from plAtHsp81.2-SAG1HC-immunized mice had significantly higher levels of IgGt, IgG2a, and IgG2b anti-SAG1HC antibodies than serum from rAtHsp81.2-SAG1HC, control, and PBS groups. The number of cysts per brain in the plAtHsp81.2-SAG1HC-immunized mice was significantly reduced, and the parasite load in brain tissue was also lower in this group compared with the remaining groups. In an immunoblot assay, plant-expressed AtHsp81.2-SAG1HC was shown to react with antibodies present in sera from T. gondii-infected people. Therefore, the plant expression of a T. gondii antigen fused to the non-pathogenic adjuvant and carrier plant HSP90 as formulations against T. gondii can improve the vaccine efficacy, and plant extract can be directly used for vaccination without the need to purify the protein, making this platform a suitable and powerful biotechnological system for immunogenic antigen expression against toxoplasmosis.

13.
Front Microbiol ; 12: 716534, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421876

RESUMO

Toxoplasmosis is one of the most prevalent and neglected zoonotic global diseases caused by Toxoplasma gondii. The current pharmacological treatments show clinical limitations, and therefore, the search for new drugs is an urgent need in order to eradicate this infection. Due to their intrinsic biological activities, ß-carboline (ßC) alkaloids might represent a good alternative that deserves further investigations. In this context, the in vitro anti-T. gondii activity of three ßCs, harmine (1), 2-methyl-harminium (2), and 9-methyl-harmine (3), was evaluated herein. Briefly, the three alkaloids exerted direct effects on the parasite invasion and/or replication capability. Replication rates of intracellular treated tachyzoites were also affected in a dose-dependent manner, at noncytotoxic concentrations for host cells. Additionally, cell cycle analysis revealed that both methyl-derivatives 2 and 3 induce parasite arrest in S/M phases. Compound 3 showed the highest irreversible parasite growth inhibition, with a half maximal inhibitory concentration (IC50) value of 1.8 ± 0.2 µM and a selectivity index (SI) of 17.2 at 4 days post infection. Due to high replication rates, tachyzoites are frequently subjected to DNA double-strand breaks (DSBs). This highly toxic lesion triggers a series of DNA damage response reactions, starting with a kinase cascade that phosphorylates a large number of substrates, including the histone H2A.X to lead the early DSB marker γH2A.X. Western blot studies showed that basal expression of γH2A.X was reduced in the presence of 3. Interestingly, the typical increase in γH2A.X levels produced by camptothecin (CPT), a drug that generates DSB, was not observed when CPT was co-administered with 3. These findings suggest that 3 might disrupt Toxoplasma DNA damage response.

14.
BMC Res Notes ; 14(1): 19, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413578

RESUMO

OBJECTIVE: Resveratrol (RSV) is a multitarget drug that has demonstrated activity against Toxoplasma gondii in macrophage and human foreskin fibroblast (HFF) cell line infection models. However, the mechanism of action of RSV has not yet been determined. Thus, with the aim of identifying a possible mechanism of the anti-T. gondii activity of this compound, we analyzed the effects of RSV on histones H3 and H4 lysine 16 acetylation (H4K16). We also analyzed RSV-induced DNA damage to intracellular tachyzoites by using the DNA damage marker phosphorylated histone H2A.X (γH2AX). RESULTS: RSV inhibited intracellular T. gondii tachyzoite growth at concentrations below the toxic threshold for host cells. The IC50 value after 24 h of treatment was 53 µM. RSV induced a reduction in H4K16 acetylation (H4K16ac), a marker associated with transcription, DNA replication and homologous recombination repair. A similar deacetylation effect was observed on histone H3. RSV also increased T. gondii H2A.X phosphorylation at the SQE motif (termed γH2A.X), which is a DNA damage-associated posttranslational modification. Our findings suggest a possible link between RSV and DNA damage or repair processes that is possibly associated with DNA replication stress.


Assuntos
Histonas , Toxoplasma , Acetilação , Histonas/metabolismo , Humanos , Fosforilação , Resveratrol/farmacologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-32656097

RESUMO

Toxoplasma gondii is the causative agent of toxoplasmosis in animals and humans. This infection is transmitted to humans through oocysts released in the feces of the felines into the environment or by ingestion of undercooked meat. This implies that toxoplasmosis is a zoonotic disease and T. gondii is a foodborne pathogen. In addition, chronic toxoplasmosis in goats and sheep is the cause of recurrent abortions with economic losses in the sector. It is also a health problem in pets such as cats and dogs. Although there are therapies against this infection in its acute stage, they are not able to permanently eliminate the parasite and sometimes they are not well tolerated. To develop better, safer drugs, we need to elucidate key aspects of the biology of T. gondii. In this review, we will discuss the importance of the homologous recombination repair (HRR) pathway in the parasite's lytic cycle and how components of these processes can be potential molecular targets for new drug development programs. In that sense, the effect of different DNA damage agents or HHR inhibitors on the growth and replication of T. gondii will be described. Multitarget drugs that were either associated with other targets or were part of general screenings are included in the list, providing a thorough revision of the drugs that can be tested in other scenarios.


Assuntos
Preparações Farmacêuticas , Toxoplasma , Toxoplasmose Animal , Animais , Gatos , Dano ao DNA , Reparo do DNA , Cães , Ovinos , Toxoplasma/genética , Toxoplasmose Animal/tratamento farmacológico
16.
Front Bioeng Biotechnol ; 8: 622186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33553125

RESUMO

Heat shock proteins 90 kDa (Hsp90s) were originally identified as stress-responsive proteins and described to participate in several homeostatic processes. Additionally, extracellular Hsp90s have the ability to bind to surface receptors and activate cellular functions related to immune response (cytokine secretion, cell maturation, and antigen presentation), making them very attractive to be studied as immunomodulators. In this context, Hsp90s are proposed as new adjuvants in the design of novel vaccine formulations that require the induction of a cell-mediated immune response to prevent infectious diseases. In this review, we summarized the adjuvant properties of Hsp90s when they are either alone, complexed, or fused to a peptide to add light to the knowledge of Hsp90s as carriers and adjuvants in the design of vaccines against infectious diseases. Besides, we also discuss the mechanisms by which Hsp90s activate and modulate professional antigen-presenting cells.

17.
Parasite Epidemiol Control ; 7: e00121, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31872090

RESUMO

Infection with Toxoplasma gondii is very common in humans throughout the world, the intake of raw or undercooked meat with tissue cysts and fruits, vegetables and water contaminated with parasite oocysts being the main routes of infection. Here, we analyzed the seroprevalence of anti-T. gondii antibodies in pregnant females (age 13-44 years; n = 920) between April 2014 and December 2017 from Chascomús (Argentina), a city immersed in a rural area. Altogether 320 tested positive for immunoglobulin G antibodies, yielding an overall seroprevalence of 34.8% (CI 95%: 31.7-37.9). No association was observed between seropositivity and age. In addition, by using the QGIS 3.2.1 software we analyzed the geographical distribution of 769 (83.6%) pregnant females in two main areas of the city: Urban (n = 157) and Peri-urban (n = 612) with a seroprevalence of 26.8% (CI 95%: 19.8-33.7) and 36.4% (CI 95%: 32.6-40.3) respectively, and this difference was statistically significant (p = 0.023). Furthermore, we assessed through a questionnaire survey, between April 2016 to December 2017, possible risk factors such as activity (urban and rural), home water supply, animal husbandry, presence of cats as pets, gardening and consumption of meat and its derivatives (pork, sheep meat and sausages) and their frequencies (consumption per week), not finding significant association with seropositivity. Significant differences was found when the seroprevalence was analyzed between the urban and peri-urban neighborhoods of the city of Chascomús. The higher seroprevalence in peri-urban neighborhoods could be due to an unfavorable socioeconomic situation and/or to undeveloped peri-urban environments, which is a risk factor that should be taken into account when planning the health care of pregnant females.

18.
Artigo em Inglês | MEDLINE | ID: mdl-30815397

RESUMO

Toxoplasma gondii is an apicomplexan protozoan parasite with a complex life cycle composed of multiple stages that infect mammals and birds. Tachyzoites rapidly replicate within host cells to produce acute infection during which the parasite disseminates to tissues and organs. Highly replicative cells are subject to Double Strand Breaks (DSBs) by replication fork collapse and ATM, a member of the phosphatidylinositol 3-kinase (PI3K) family, is a key factor that initiates DNA repair and activates cell cycle checkpoints. Here we demonstrate that the treatment of intracellular tachyzoites with the PI3K inhibitor caffeine or ATM kinase-inhibitor KU-55933 affects parasite replication rate in a dose-dependent manner. KU-55933 affects intracellular tachyzoite growth and induces G1-phase arrest. Addition of KU-55933 to extracellular tachyzoites also leads to a significant reduction of tachyzoite replication upon infection of host cells. ATM kinase phosphorylates H2A.X (γH2AX) to promote DSB damage repair. The level of γH2AX increases in tachyzoites treated with camptothecin (CPT), a drug that generates fork collapse, but this increase was not observed when co-administered with KU-55933. These findings support that KU-55933 is affecting the Toxoplasma ATM-like kinase (TgATM). The combination of KU-55933 and other DNA damaging agents such as methyl methane sulfonate (MMS) and CPT produce a synergic effect, suggesting that TgATM kinase inhibition sensitizes the parasite to damaged DNA. By contrast, hydroxyurea (HU) did not further inhibit tachyzoite replication when combined with KU-55933.


Assuntos
Antiprotozoários/farmacologia , Morfolinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pironas/farmacologia , Toxoplasma/efeitos dos fármacos , Toxoplasma/crescimento & desenvolvimento , Sinergismo Farmacológico
19.
Anal Biochem ; 564-565: 116-122, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30393087

RESUMO

This article describes a microfluidic LIF immunosensor for the quantitative determination of anti-Toxoplasma gondii IgG (anti-T. gondii) specific antibodies. The serological detection of these antibodies plays a crucial role in the clinical diagnosis of toxoplasmosis. Zinc oxide nanoparticles (ZnO-NPs) obtained by wet chemical procedure were covered with chitosan and then used to conjugate T-gondii antigens into the central microfluidic channel. Serum samples containing anti-T-gondii IgG antibodies were injected into the immunosensor where they interact immunologically with T. gondii antigens. Bound antibodies were quantified by the addition of anti-IgG antibodies labeled whit alkaline phosphatase (ALP). ALP enzymatically converts the non-fluorescent 4-methylumbelliferyl phosphate (4-MUP) to soluble fluorescent methylumbelliferone that was measured using excitation at 355 nm and emission at 440 nm. The relative fluorescent response of methylumbelliferone is proportional to the concentration of anti-T. gondii IgG antibodies. The coefficients of variation are less than 4.73% for within-day assays and less than 6.34% for between-day assays. Results acquired by LIF immunosensor agree with those obtained by enzyme-linked immunosorbent assay method, suggesting that the designed sensor represents a promising tool for the quantitative determination of anti-T. gondii IgG antibodies of clinical samples.


Assuntos
Quitosana/química , Nanopartículas/química , Toxoplasmose/diagnóstico , Óxido de Zinco/química , Fosfatase Alcalina/metabolismo , Anticorpos Antiprotozoários/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G/metabolismo , Toxoplasmose/sangue
20.
J Photochem Photobiol B ; 177: 8-17, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29031212

RESUMO

In the present work, we have evaluated the effect of three different types of radiation: UVC (254±5nm), UVA (365±20nm) and visible (420±20nm) on different morphological and biological functions of Toxoplasma gondii tachyzoites. Briefly, UVC and UVA showed an inhibitory effect on parasite invasion in a dose-dependent manner. UVC showed the strongest effect inducing both structural damage (antigens) and functional inhibition (i.e., invasion and replication). On its own, visible light induces a quite distinctive and selective pattern of parasite-attenuation. This type of incident radiation inhibits the replication of the parasite affecting neither the capability of invasion/attachment nor the native structure of proteins (antigens) on parasites. Such effects are a consequence of photosensitized processes where phenol red might act as the active photosensitizer. The potential uses of the methodologies investigated herein are discussed.


Assuntos
Luz , Toxoplasma/efeitos da radiação , Raios Ultravioleta , DNA Super-Helicoidal/metabolismo , DNA Super-Helicoidal/efeitos da radiação , Microscopia de Fluorescência , Espécies Reativas de Oxigênio/metabolismo , Toxoplasma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...